Simulations of Phytoplankton Species and Carbon Production in the Equatorial Pacific Ocean 1. Model Configuration and Ecosystem Dynamics

نویسندگان

  • Baris Salihoglu
  • Eileen E. Hofmann
چکیده

The primary objective of this research is to investigate phytoplankton community response to variations in physical forcing and biological processes in the Cold Tongue region of the equatorial Pacific Ocean at 0N, 140W. This research objective was addressed using a one-dimensional multicomponent lower trophic level ecosystem model that includes detailed algal physiology, such as spectrally-dependent photosynthetic processes and iron limitation on algal growth. The ecosystem model is forced by a one-year (1992) time series of spectrally-dependent light, temperature, and water column mixing obtained from a Tropical Atmosphere-Ocean (TAO) Array mooring. Autotrophic growth is represented by five algal groups, which have light and nutrient utilization characteristics of low-light adapted Prochlorococcus, high-light adapted Prochlorococcus, Synechococcus, autotrophic eukaryotes, and large diatoms. The simulated distributions and rates are validated using observations from the 1992 U.S. Joint Global Ocean Flux Study Equatorial Pacific cruises. The modeldata comparisons show that the simulations successfully reproduce the temporal distribution of each algal group and that multiple algal groups are needed to fully resolve the variations observed for phytoplankton communities in the equatorial Pacific. The 1992 simulations show seasonal variations in algal species composition superimposed on shorter time scale variations (e.g., 8–20 days) that arise from changes in the upwelling/downwelling environmental structure. The simulated time evolution of the algal groups shows that eukaryotes are the most abundant group, being responsible for half of the annual biomass and 69% of the annual primary production and organic carbon export.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulations of Phytoplankton Species and Carbon Production in the Equatorial Pacific Ocean 2. Effects of Physical and Biogeochemical Processes

A one-dimensional multi-component lower trophic level ecosystem model that includes detailed algal physiology is used to investigate the response of phytoplankton community and carbon production and export to variations in physical and biochemical processes in the Cold Tongue region of the equatorial Pacific Ocean at 0N, 140W. Results show that high-frequency variability in vertical advection a...

متن کامل

Size-fractionated nitrogen uptake measurements in the equatorial Pacific and confirmation of the low Si–high-nitrate low-chlorophyll condition

[1] The equatorial Pacific Ocean is the largest natural source of CO2 to the atmosphere, and it significantly impacts the global carbon cycle. Much of the large flux of upwelled CO2 to the atmosphere is due to incomplete use of the available nitrate (NO3) and low net productivity. This high-nutrient low-chlorophyll (HNLC) condition of the equatorial upwelling zone (EUZ) has been interpreted fro...

متن کامل

Sensitivity of sea-to-air CO2 flux to ecosystem parameters from an adjoint model

An adjoint model is applied to examine the biophysical factors that control surface pCO2 in different ocean regions. In the tropical Atlantic and Indian Oceans, the annual cycle of pCO2 in the model is highly dominated by temperature variability, whereas both the temperature and dissolved inorganic carbon (DIC) are important in the tropical Pacific. In the high-latitude North Atlantic and South...

متن کامل

Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean

A global marine ecosystem mixed-layer model is used to study iron cycling and nutrient-limitation patterns in surface waters of the world ocean. The ecosystem model has a small phytoplankton size class whose growth can be limited by N, P, Fe, and/or light, a diatom class which can also be Si-limited, and a diazotroph phytoplankton class whose growth rates can be limited by P, Fe, and/or light l...

متن کامل

Ecosystem dynamics and export production in the central and eastern equatorial Pacific: A modeling study of impact of ENSO

[1] Biogeochemical responses to physical changes associated with the El Niño/Southern Oscillation (ENSO) phenomenon are studied for the period of 1990–2001 using a physical-biogeochemical model. During warm ENSO, the ferricline deepens in the central and eastern equatorial Pacific, resulting in low biomass and low export production. Zooplankton and large phytoplankton are more depressed than sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016